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ABSTRACT

Modulating the distances between the vertices and the center of mass
of a triangular mesh is a popular approach to watermark 3D objects.
Prior work has formulated this approach as a quadratic programming
problem which minimizes the geometric distortion while embedding
the watermark payload in the histogram of distances. To enhance this
framework, we introduce two watermarking components, namely the
spread transform and perceptual shaping based on roughness infor-
mation. Benchmarking results showcase the benefits of these add-
ons with respect to the fidelity-robustness trade-off.

Index Terms— 3D watermarking, spread transform, roughness

1. INTRODUCTION

Watermarking consists in imperceptibly altering multimedia content
to transmit a message. This technology is instrumental in content
protection systems due to the ability of the embedded watermark
to survive subsequent modifications [1]. 3D models have become
ubiquitous in many industrial applications such as movie produc-
tion, video games and computational engineering. The need for wa-
termarking methods dedicated to the protection of 3D assets has thus
increased.

Three challenging issues must be addressed in 3D watermark-
ing. First, meshes are irregular samplings of surfaces. As a re-
sult, signal processing tools, which are routinely used for uniformly-
sampled signals such as audio and/or video cannot be readily used.
Second, various defects, e.g. self-intersections, are commonly found
in 3D models and practical algorithms will need to deal with such
imperfect inputs. Third, meshes can undergo a large variety of al-
terations which may be hard to tackle. For these reasons, design-
ing blind and robust 3D watermarking methods is still a scientific
challenge. Indeed, without the original content at detection, water-
marking methods cannot rely on recent advances in shape matching
to perform registration. The synchronization between the embedder
and decoder, and the robustness of the watermark is therefore usually
achieved by using very resilient 3D primitives.

A popular 3D watermarking technique consists in modulating
the distances between the vertices and the center of mass of a trian-
gular mesh. In Section 2, we first review the different evolutions
around this watermarking paradigm prior to detailing a quadratic
programming (QP) framework that has been used to formalize this
approach in Section 3. We then introduce two add-ons to comple-
ment this baseline approach in Section 4: the spread transform and
perceptual shaping based on roughness information. Benchmarking
results reported in Section 5 clearly illustrate the added value of the
introduced components with respect to the fidelity-robustness water-
marking trade-off. Eventually, we discuss in Section 6 a number of
avenues for follow-up investigations.

2. RELATED WORK

The embedding domain can be used to classify the variety of pub-
lished 3D watermarking algorithms [2]. On the one hand, most of
the transforms which have been considered so far for watermarking
(spectral, multi-resolution) induce subsequent non-blind watermark
decoding [3]. On the other hand, spatial-based approaches have
been found to yield very stable embedding primitives for watermark-
ing. In particular, a pioneer work modifies the distances between the
mesh vertices and center of mass to convey information [4].

More specifically, the watermark carrier is the average of the
radial distances inside each bin of the histogram of said distances.
Information is transmitted by modulating this average value around
some threshold. The robustness of this scheme is brought by: (i) the
very large stability of the center of mass against many attacks such
as noise addition; (ii) the use of radial distances, which are invari-
ant to rigid transforms; and (iii) the computation of a scale invariant
data-dependent histogram. This baseline algorithm has then been
further improved with a number of variants. For instance, more inte-
gral features, e.g. area-weighted [5] or volume-weighted geometric
measures [6], have been considered to reinforce robustness. Alter-
natively, fidelity can be improved by a post-process which mitigates
the embedding distortion [7] or by locally adjusting the watermark-
ing strength based on some information of roughness [8]. Many
perceptual distortion metrics indeed rely on the fact that geometri-
cal alterations are more perceptible in smooth regions than in rough
ones.

However, the baseline system has two major shortcomings: the
causality issue is not properly tackled, i.e. the watermarking oper-
ation can alter the center of mass, and the actual vertex relocation
strategy relies on an ad-hoc ‘histogram mapping function’, which
is essentially a power function whose parameter is iteratively deter-
mined so that the average radial distance in a bin reaches a target
value. To tackle both issues, the watermarking process has been
previously formulated as a QP problem [9] that is detailed in Sec-
tion 3. In this paper, we plug in two well known watermarking com-
ponents in this QP framework. We introduce (i) a spread transform
(ST) in each bin in an attempt to diversify the solution space and (ii)
roughness-dependent weights in the fidelity constraint to perceptu-
ally adjust the watermark power.

3. QUADRATIC PROGRAMMING FRAMEWORK

A triangular surface mesh M is defined by its set of nv vertices, and
its set of faces and edges. The Cartesian coordinates of vertex vi,
(i ∈ J0, nv − 1K) are (xi, yi, zi), and its spherical coordinates with
respect to the center of mass G are denoted (ρi, θi, ϕi). ui denotes
the unit radial direction vector (from G to vi). Let m denote the wa-
termark payload with nb bits and α > 0 the watermark embedding



strength. A superscript ‘w’ refers to a watermarked variable. Vectors
are written in column layout by convention.

To construct the watermarking carrier, the set of radial distances
ρ = {ρi} is dispatched in a histogram having nB bins. Its edges
range from min (ρ) to max (ρ) and are evenly spaced by a step
s. ρjmin denotes the lower boundary of bin j, and Nj is the num-
ber of samples within it. For practical reasons, ρi is normalized to
ρ̃i ∈ [0, 1] using the affine mapping ρ̃i = s−1

(
ρi − ρBi

min

)
, where

Bi denotes the index of the bin associated to the distance ρi. The
payload m is then embedded by altering the average value inside the
bins of the histogram. The extremal bins are never modified (i.e.,
nB = nb + 2) to preserve the upper and lower bounds of the his-
togram, but the resulting offsets are omitted in the remainder of the
paper (i.e. nB = nb afterwards). To embed a bit mj , the average
value of the normalized radial distances inside bin j is raised above
0.5 + α if mj = 1, and lowered below 0.5− α otherwise.

The embedding process can then be formulated as a QP prob-
lem, where the objective is to find the arrangement of vertex radial
displacements which minimizes some cost function subject to the
constraints of (i) embedding the desired payload in the histogram of
radial distances and (ii) addressing the causality issue [9]. State-of-
the-art solvers can be used to find such optimal solutions and the
watermarked mesh is finally obtained by adding the relocation vec-
tors s∆ρ̃wi ui to the vertex positions, where ∆ρ̃wi = ρ̃wi − ρ̃i are the
displacements given by the optimal QP solution.

To minimize the geometrical distortion, the cost function in
the QP framework is set to the squared error metric (SE), given
by

∑nv−1
i=0 ∥∆ρ̃i∥2. Let W ∈ RnB×nv denote the matrix whose

coefficients are Wj,i = Nj
−1δj,Bi , where δ is the usual Kronecker

delta, t ∈ RnB a constant vector with entries 0.5 and M ∈ Rnb×nb

a diagonal matrix containing the (antipodal) payload bits. The wa-
termarking constraints are expressed as a set of linear inequalities:

M (t−Wρ̃) + α < MW∆ρ̃w. (1)

To perfectly reconstruct the histogram of radial distances at decod-
ing, changes are prohibited in the position of the center of mass
(Gw = G), and the mapping between vertices and bins (∀i ∈J1, nvK, Bw

i = Bi). G is computed as the average vertex position,
which is a linear combination of the Cartesian coordinates. The sta-
bility of G can thus be written with the derivatives of the spherical
coordinates:

nv−1∑
i=0

∆ρ̃wi

cos θi cosϕi

sin θi cosϕi

sinϕi

 = 0. (2)

Geometrically, it means that the sum of all vertex displacements is
null. Finally, the mapping between bins and vertices is guaranteed
by setting bounds for the unknowns: −ρ̃i < ∆ρ̃wi < 1 − ρ̃i. Since
the edges of the histogram are evenly spaced, and the extremal bins
are not altered, these constraints are sufficient to formulate the wa-
termarking problem.

At the receiver side, extracting the payload reduces to construct-
ing the histogram of normalized radial distances ρ̃ and comparing
the average inside each bin to the threshold value 0.5.

4. CONTRIBUTIONS

4.1. Spread-Transform

ST is routinely used in watermarking and amounts to projecting the
carrier signal onto a pseudo-random sequence p, i.e. to comput-
ing the inner product between the two sequences, prior to applying

some embedding algorithm. The spreading sequence typically has
zero-mean and unit norm with samples drawn from either a normal
or uniform distribution. If the watermark modulation is binary, it is
simply a regular spread-spectrum watermarking [10]. If the embed-
ding mechanism instead relies on binning, it is the so-called spread-
transform dither modulation (STDM [11]). While the latter has great
potential theoretically, its practical performances are closely related
to the distribution of the carrier signal.

Prior work in 3D watermarking considered applying STDM di-
rectly to the radial distances of the vertices [8]. In this case, the wa-
termarking system is highly sensitive to the slightest changes in the
ordering of the distances in ρ. To avoid such instability, one may be
tempted to apply STDM to the average radial distances considered
in the baseline QP framework to benefit from the stability inherited
from the integration within the bin. However, empirical observations
revealed that the distribution of these values is highly concentrated
around 0.5, thereby making them ill-suited for binning schemes. For
large quantization steps, a single bin is used; for small quantization
steps, robustness performances are worse than for the baseline sys-
tem. Still, it may be useful to keep the ST in an attempt to diversify
the solution space of the QP framework. The system is then quite
close to spread spectrum except that the individual displacement for
each vertex is not given by a generic equation but is instead driven
by the solver that optimizes the QP problem.

Adding ST to the baseline QP framework modifies the water-
mark constraints in the embedding process. First, the number of
bins in the histogram is multiplied by the spreading factor k, i.e.,
nB = k.nb (omitting the extremal bins at both ends), and the aver-
age normalized radial distances are partitioned into nb consecutive
carrier sequences with k values. Let τ = 0.5

∑k−1
i=0 pi denote the

projection of t onto the spreading sequence. Projecting each carrier
sequence onto p yields nb values ci and, depending on the bit mj , cj
is either raised above τ +α or lowered below τ −α. This translates
into a revised QP watermark constraint:

MΨ (t−Wρ̃) + α < MΨW∆ρ̃w, (3)

where Ψ denotes a nb ×nB matrix, whose rows contain k values of
the spreading sequence p, shifted by a multiple of k. For k = 1, Ψ
is the identity matrix, and the constraint simplifies to Equation (1).

At decoding, the averages inside the nB bins of the histogram
are computed, the nb sequences are projected back onto p and the
resulting values are compared to τ .

4.2. Roughness-driven Perceptual Shaping

Solutions of the QP problem tend to relocate all the vertices in a
bin either outwardly or inwardly (depending on the bit value) with
respect to the center of mass. This creates noticeable ring-like distor-
tions on the mesh surface. Such artifacts are not adequately captured
by the squared error metric, but perceptually-driven metrics such as
the MSDM [12] are substantially more sensitive to them [13]. This
calls for replacing the SE metric in the QP framework with another
one that would be more aligned with human perception. Unfortu-
nately, most of the existing perceptual metrics cannot be written as
a quadratic function in ∆ρ̃ (without large approximations) and, as
such, cannot be easily integrated within the QP framework [14].

This being said, it is straightforward to scale the individual
terms of the SE cost function by some weights w = {wi} in an
attempt to obtain a perceptually-driven weighted error wSE =∑nv−1

i=0 wi∥∆ρ̃i∥2. In particular, based on previous findings, it
makes sense to tie these weights to the local roughness in order
to harden the fidelity constraint in smooth areas of the object and,



10
−5

10
−4

10
−3

10
−2

0

0.1

0.2

0.3

0.4

0.5

0.6

M
S

D
M

RMS (%)

baseline

k=2

k=3

k=4

k=5

k=6

k=8

k=16

0.1% noise

0.3% noise

Fig. 1. Median RMS vs. median MSDM: assessing the embedding
distortion when the embedding strength α is varied.

conversely, to relax it in rough regions [8]. In this paper, the local
roughness ri is estimated at each vertex and is derived from statistics
relating to the principal curvatures [15]. Empirically, these rough-
ness values have a distribution with few large outliers and small
standard deviation and therefore need to be post-processed. First,
outlying values are clipped to a minimal and maximal threshold, set
to 5% of the lowest and largest values. Next, all values are (affine)
mapped to obtain r̃ = {r̃i} in [0, 1]. Finally, the weights w are set
to 1− r̃.

To ensure that vertices are not relocated to arbitrarily large dis-
tances, the QP cost function is defined as a linear trade-off between
the SE and the wSE metric. Denoting by λ ∈ [0, 1] the control pa-
rameter, the cost function is simply given by (1 − λr̃) · ∆ρ̃2. For
λ = 0, the cost function reduces to the SE metric (baseline system);
for λ = 1, the fidelity constraint corresponds to the wSE metric.

5. EXPERIMENTAL RESULTS

For benchmarking purposes, we considered a database of 10 meshes
having between 20k and 100k vertices [16]. For each 3D model,
seven watermark payloads of nb = 16 bits are randomly generated
and embedded, thereby creating creating 70 differently watermarked
meshes. Multiple spreading lengths are surveyed, including k = 1
(baseline), 2, 3, 4, 5, 6, 8, and 16. Note that using a fixed payload size
means that the number of bins in the histogram of radial distances
increases with k.

5.1. Embedding Distortion with ST

The embedding distortion is recorded for multiple embedding
strengths α ∈ [0.001, 0.4], knowing that large α values are likely
to create unsolvable QP problems in the baseline framework. Two
distortion metrics are included in the benchmark: the root mean
square error (RMS) and the MSDM, which is expected to be more
in accordance to human perception. The first metric pools the Eu-
clidean distances between vertices in R3 and is expressed as a ratio
of the size of the bounding box for normalization purposes. The
second metric is asymmetric and we report the distance from the
original to the watermarked mesh. The median results are reported
in Figure 1.

Increasing the spreading length decreases the lower bound of
achievable embedding distortions for both metrics. However, if a tar-
get RMS can be reached with a spreading length k, increasing this
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the size of the bounding box) for different spreading lengths and a
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value yields larger perceptual distortion, as measured by MSDM.
This is due to the fact that increasing the spreading length trans-
lates into a larger number of bins in the histogram. As a result, the
relocation energy is spread on more, yet slightly smaller, ring-like
perturbations, which further triggers the MSDM. Conversely, for a
target MSDM value, increasing k lowers the RMS. Indeed, to main-
tain the MSDM while increasing the number of ring artifacts, it is
necessary to greatly reduce their amplitudes and thus to decrease the
RMS. All in all, these observations corroborate that the MSDM is
more sensitive to the ring-like embedding artifacts.

To place these first results into perspective, two dotted lines have
been added in Figure 1 to indicate the MSDM distortion introduced
by uniform noise addition for two different levels of noise. The lower
level (0.1% noise amplitude with respect to the size of the bounding
box) is barely noticeable, while the larger one (0.3%) represents a
perceptible alteration. This clearly highlights that ST is most use-
ful to bring flexibility in the acceptable distortion range for the QP
framework. Without ST, we would need to use very small embed-
ding strengths to get in this region and the watermark would there-
fore have very little robustness.

5.2. Robustness with ST

By design, all methods are invariant to rigid transforms, reordering
of vertices, and uniform scaling, and we therefore investigate the
impact of ST on robustness after uniform noise addition. In order
to guarantee a fair comparison, the embedding strength α has been
adjusted for each spreading length k in order to obtain a MSDM
distortion close to 0.37. Figure 2 illustrates the recorded bit error
rate (BER) when increasing the attacking strength. There is no curve
for k = 16 since this setup consistently produces MSDM distortion
lower than the target value and therefore exhibits extremely poor
robustness.

On average, using a longer spreading sequence decreases the
BER with respect to the baseline QP framework for noise levels
lower than a 1% cut-off threshold. Conversely, the opposite phe-
nomenon appears for stronger attacks: the BER rockets up more
quickly to 50%. In other words, ST preserves the watermark trans-
mission quality longer but collapses more drastically when the attack
exceeds the capabilities of the system. The same trend is observed at
various target MSDM value. As a rule of thumb, the larger the target
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Fig. 3. Average BER vs. perceptual embedding distortion for 1%
uniform noise addition.

MSDM is, the longer the system survives and the sharper the tran-
sition regime is. To provide a better understanding of the situation,
Figure 3 depicts the robustness vs. fidelity trade-off for 1% uniform
noise addition.

The typical operating region for 3D watermarking systems is
given by a MSDM in [0.35, 0.4], to have the largest possible dis-
tortion that remains hardly noticeable. In this region, ST obviously
manages to lower the BER for the same distortion level, and the
spreading value k = 3 offers the best fidelity-robustness trade-off.

Due to space restriction, we do not report on other attacks such
as quantization, smoothing, etc. Nevertheless, the same general
trend is observed: for a given level of fidelity, ST provides a boost
of robustness for lower levels of attack until a drop-off threshold
where performances collapse faster than for the baseline QP 3D
watermarking framework.

5.3. Embedding Distortion with Perceptual Shaping

To evaluate the impact of introducing perceptual weights, relating to
roughness information, on fidelity, we measure the embedding dis-
tortion with three alternate metrics: the RMS, the MSDM, and an
additional metric, defined as θ = w · ∆ρ2

(
∥∆ρ2∥∥w∥

)−1. Ge-
ometrically, the last metric can be seen as the cosine of the angle
between the vector of vertex relocation amplitudes and the vector of
roughness-driven weights. Figure 4 depicts the variations of these
metrics when varying the mixing parameter λ from 0 (SE minimiza-
tion) to 1 (only minimizing the wSE), for α = 0.05 and without ST
(baseline).

Essentially, the RMS is aligned with the SE cost function and θ
is aligned with the wSE. As a result, the RMS increases with λ since
the underlying cost function in the QP optimization framework grad-
ually moves away from SE. Conversely, raising λ strengthens the
perceptual constraints in the cost function and makes the relocation
amplitude vector ∆ρ2 deviate more and more from the weighting
direction w. Visually, this translates into the ring-like artifacts be-
ing attenuated in smooth regions and being amplified in the roughest
parts of the 3D model. All these observations are matching the ex-
pected behavior of the system and the interesting plot is actually the
one reporting the variation of the MSDM metric. Due to its com-
plex definition, this metric cannot be easily integrated within the
QP framework. Still, the MSDM considers roughness information
among other distortion cues to evaluate fidelity. As a result, intro-
ducing a weighting scheme accounting for this information in the QP
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framework appears to provide a means to decrease the MSDM dis-
tortion. Indeed, there seems to be an optimal mixing parameters λ∗

for which the MSDM is 7% lower than with the baseline QP frame-
work (λ = 0). A quick sanity check confirms that this fidelity gain
does not induce any noticeable change in robustness. In other words,
introducing this roughness-driven perceptual shaping strategy in the
QP framework further improves the fidelity-robustness trade-off.

6. CONCLUSION

In this paper, we introduced two add-ons to enrich the QP frame-
work for watermarking the radial distances of a surface mesh. The
ST leverages the advantages of the stability provided by the integra-
tion within each bin of the histogram and the diversity of the solution
space provided by the subdivision of the bins. This variant is shown
to improve the quality of watermarking transmission: the robustness
is improved up to a cut-off attacking strength where robustness per-
formances collapse faster than with the baseline system. The inte-
gration of roughness-driven perceptual weights in the QP framework
also provides a means to account for complex fidelity metrics such
as the MSDM, that cannot be directly incorporated into the frame-
work without compromising robustness. Although not reported in
this paper, these two add-ons can be successfully combined to fur-
ther improve the fidelity-robustness watermarking trade-off.

In future work, we will investigate how to gain greater control
over the embedding distortion by using more sophisticated cost func-
tions that cannot be reduced to simple wMSE, e.g. cost functions
having cross terms in their formulation to account for the interde-
pendency between neighbor vertices. Moreover, based on past expe-
rience with audio-visual content, we will explore the possibility to
model the relocation directions themselves from perceptual princi-
ples rather than simply scaling the relocation amplitude. Finally, we
notice that a by-product of the ST component is that it introduces a
secret in the watermarking framework. We will evaluate its impact
on 3D watermarking security.
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[12] Guillaume Lavoué, Elisa Drelie Gelasca, Florent Dupont,
Atilla Baskurt, and Touradj Ebrahimi, “Perceptually-driven 3D
distance metrics with application to watermarking,” in Appli-
cations of Digital Image Processing XXIX, August 2006, vol.
6312 of Proceedings of SPIE, p. 63120L.
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